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Final Report Overview
N00173-06-2-C901
Ocean and Coastal Modeling

George E. lIoup, Juliette W. Ioup, Germana Peggion, Department of Physics
Martin J. Guillot, Department of Mechanical Engineering
J. Alex McCorquodale, Department of Civil and Environmental Engineering
Ioannis Y. Georgiou, Pontchartrain Institute for Environmental Sciences
University of New Orleans

This grant consisted of work divided into two parts. The first part, “Ocean
Modeling,” was performed off-campus. The lead researcher was Dr. Germana
Peggion of the Department of Physics at UNO. Her colleagues for this research
were employees of the Oceanography Division of the Naval Research Laboratory
at Stennis Space Center (NRL-SSC). The main objective of the ocean modeling
portion of this grant was to collaborate with and assist NRL-SSC in implementing,
evaluating, and applying ocean forecasting systems in support of naval
applications.

The second part of the grant (Coastal Modeling) consisted of calculations
concerning storm surge simulations over south Louisiana and was performed on
campus. The lead investigator was Dr. Martin Guillot of the Department of
Mechanical Engineering at UNO. He was assisted in this work by Dr. loannis
Georgiou of the Pontchartrain Institute for Environmental Sciences at UNO and
Dr. Alex McCorquodale of the Department of Civil and Environmental
Engineering at UNO. The objective was to compute water surface elevations over
southern Louisiana due to storm surge produced by the updated “Standard Project
Hurricane” (SPH). The SPH defines a methodology for producing hurricane path,
forward speed and wind field scenarios that are used as design criteria to guide the
design heights of the levee system in southeast Louisiana.

Dr. George Ioup and Dr. Juliette loup of the Department of Physics at UNO
administered the grant.

There are five parts to this report. The first is this overview. The second is a
summary of achievements for the Ocean Modeling by Dr. Peggion organized by
Task and titled Ocean Modeling. The third is a summary of the achievements for
the Coastal Modeling by Dr. Guillot and Dr. Georgiou titled Standard Project

20090401083




Hurricane Update: ADCIRC Storm Simulations Over Southeast Louisiana. The
fourth and fifth are two manuscripts to be published in the Journal of Marine
Systems, which summarize some of the work by Dr. Peggion and her colleagues,
Super-ensemble Forecasts and Resulting Acoustic Sensitivities in Shallow Waters,
and A Note on Ncom Temperature Forecast Error Calibration Using the Ensemble
Transform. The latter papers were also supported by a funding from NRL-SSC
through NASA-Stennis and the Louisiana Board of Regents to UNO as well as by
a follow-on NRL cooperative agreement with UNO, N00173-07-2-C901.




STANDARD PROJECT HURRICANE UPDATE: ADCIRC
STORM SIMULATIONS OVER SOUTHEAST LOUISIANA
By
Dr. Martin J. Guillot
Dr. Ioannis Georgiou

University of New Orleans
New Orleans, LA

Objective

The purpose of the current effort is to compute storm surges produced by the
standard project hurricane (SPH) using the ADCIRC storm surge model and to compare
surges resulting from indices defined in a 1959 National Weather Bureau report with
indices defined as part of the SPH reanalysis after the 2005 hurricane season.

Standard Project Hurricane

The SPH is one of the design criteria the U.S. Army Corps of Engineers uses for
hurricane protection projects along the east and gulf coasts of the United States. The SPH
is a hypothetical hurricane based on historical data and observations of hurricanes that
have occurred the Atlantic basin along the east and gulf coasts and was originally defined
in 1959 as part of the National Hurricane Research Project in the U.S. Weather Bureau
Report No. 33 [1] (subsequently referred to as NHRP 33) using data from storms that
occurred during the period 1900-1956. That report defined the SPH as “...the most severe
storm that is considered reasonably characteristic of a region in which the basin is
located”. The U.S. Weather Bureau and the U.S. Army Corps of Engineers (USACE)
jointly derived the specifications, criteria and procedures for computing the SPH defined
in NHRP 33. The U.S east and gulf coasts were divided into zones of approximately
equal area and SPH indices were defined for each zone. The three zones defined on the
gulf coast are shown in Figure 1 (taken from NHRP 33). The primary indices used to
define the SPH within each zone are: central pressure index (CPI), maximum 30 ft (10 m)
over water winds, radius of maximum winds and forward speed. The New Orleans area is
located in zone B.

The SPH has undergone reanalysis several times since originally defined in
NHRP 33. Reanalysis has included redefining both the SPH indices based on more recent
(after 1956) data and refining the methodologies used to compute the wind and pressure
fields. In 1979 a reanalysis of the SPH indices based on storms through 1975 was
published in NOAA Technical Report 23 [2] (subsequently referred to as NWS 23). That
document redefined the SPH as “a steady state hurricane having a severe combination of
values of meteorological parameters that will give high sustained wind speeds reasonably
characteristic of a given region”, and also revised the methodologies used for computing
the wind and pressure fields from those used in 1959 NRRP 33 report. In 1996,
Thompson and Cardone [5] developed a model for generating tropical cyclones based on
the planetary boundary layer approach. This approach was incorporated into the Ocean




Weather, Inc (OWI) meso-scale vortex numerical model for specification of surface wind
and pressure fields inside tropical cyclones based on specifying the appropriate indices.
After the 2005 hurricane season, the SPH indices were reanalyzed again to include all
data from 1851 through the 2005 hurricane season. Levinson [3] presents the results of
the SPH reanalysis and compares the 1979 indices defined in NWS 23 with the new
indices defined as part of the SPH reanalysis after the 2005 hurricane season.

The current study focuses on comparing storm surges predicted by the ADCIRC
storm surge model using the SPH indices defined in NHRS 33 (1959) and the SPH
indices defined in the reanalysis after the 2005 hurricane season. For the remainder of
this report, the SPH indices as defined in NHRS 33 will be referred to as the “old” SPH
and the SPH indices defined as part of the SPH reanalysis after the 2005 hurricane season
will be referred to as the “new” SPH. The methodology for computing the wind and
pressure fields for the old SPH is based on the methods in the 1979 NWS 23 report and
the methodology for computing the wind and pressure fields for the new SPH is based on
OWI tropical cyclone model called TC96. Storm surges are computed using the shallow
water modeling system ADCIRC

The approximate SPH wind field parameters used in this study are presented in
Table 1.

Table 1: SPH indices used to define the new and old SPH.

Central Radius of Max Wind Method for
Pressure Index | Maximum Winds Speed ecomputing wind
(mb) (nautical mile) (mph) and pressure
New SPH 904.1 11 132.0 OWI TC96 model
Old SPH 934.6 30 104.0 NWS 23
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Figure 1: Gulf coast zones defined in Report 33.



ADCIRC Storm Surge Modeling System

The ADCIRC storm surge model was originally developed by Leuttich and
Westerink [4] and since then has undergone extensive development by several
researchers and organizations. The model is based on the finite element method and
incorporates the generalized wave continuity equation (GWCE) for numerical stability.
ADCIRC computes water surface elevations and velocities at nodal points for the 2-D
depth averaged shallow water equations. A parallel version of ADCIRC has been
developed to run on several parallel architectures, including Linux clusters. For this study
the ADCIRC model was run on the 64 node Linux cluster at the University of New
Orleans. Version 46.52 is used in conjunction with the southeast Louisiana mesh
sl15v3 2007 r09a. The code, mesh, control files as well as wind fields were provided by
the U.S. Army Corps of Engineers, New Orleans District. The wind fields used to force
the ADCIRC model and are discussed in more detail below.

Modifications to Original Mesh

The ADCIRC mesh consists of nodes, elements and boundaries. ADCIRC has thc
capability to model several types of boundary conditions including, but not limited to,
elevation (tidal), inflow (river), outflow and weir. Lcvees are modeled using weir
boundaries. Weirs are specified at the given levee height for each levee using weir node
pairs and when the water surface elevation exceeds the elevation specified at the weir
node pair, weir equations are used to compute flow over that levee to simulate levce
overtopping. For the SPH study, levee overtopping was prevented in the Lake
Pontchartrain and vicinity, including the west bank by specifying the elevation of the
node weir pairs of the flood protection levees to be 25 m. The purpose is to help
determine levee heights that would be required to protect the New Orleans area and west
bank from an SPH event. The specific levees raised are shown in Figure 2.

‘ Levees Raised to 25 m in SPH Study

Figure 2; Node weir pairs that simulate flood protection levees in and around New Orleans that were
raised to 25 m.




SPH Tracks and Wind Fields

The SPH study consists of three primary tracks labeled A, C and F. The tracks are
based on COE experience and historical storm data, and are shown in Figure 3 along with
the forward translational speed along each track. The old and new SPH wind field
contours are shown Figure 4 and Figure 5, respectively. Several things are noted about
the wind fields. While the new SPH is a stronger storm in terms of maximum wind speed,
it is also a much smaller storm, with radius of maximum winds almost one third of the
old SPH. Additionally, as can be seen from comparing the two figures, the wind field
extends farther for the old SPH than the new SPH. For example, for the storm positions
shown, the wind speed in the Mississippi sound near the entrance to Lake Borgne
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Standard Project Hurricane Tracks
Track A - OLD, Forward Transtatlon 6 knota
Track A - NEW, Forward Tranalation 8 knota

e Track C- OLD, Forward Tranalation 5 knota 3 5‘\

———  Track C . NEW, Forward Transiation 6 knota 9 "

—————  TrackF - OLD, Forward Tranalation 11 knota \ \\,\
———————  Track F -NEW, Forward Transiation 11 knots \

Figure 3: SPH Storm Tracks and forward translational speed.
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Figure 4: Old SPH wind field
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Figure 5: New SPH wind field

is on the order of 70-80 mph for the old SPH, whereas for the new SPH, the wind speed
has dropped to 40-50 mph. The larger size of the old SPH can have a significant effect on
the computed storm surge, as will be shown in the results section.

Results

The results of the study are presented in a series of contour plots of maximum
water surface elevation, elevation difference and water surface elevation histories at
selected locations within the Lake Pontchartrain and vicinity study area.

All simulations were begun 30 hours before land fall with wind ramping to full
strength during the first 6 hours, so that full force winds began 24 hours prior land fall.
Prior to performing the SPH simulations, ADCIRC was run without winds for a 2 day
simulation with inflow boundary conditions specified on the Atchafalaya and Mississippi
rivers to provide correct initial water surface elevations for the SPH simulations These
results were saved and the SPH simulations were hot started from these initial conditions.
No tidal dynamics were included in this study.

The maximum water surface elevation contours for tracks A, C and F are shown in Figure 6
through Figure 8 for the (a) old and (b) new SPH respectively. Figure 6 shows that for track A, the
surge produced along the south shore of Lake Pontchartrain is higher for the old SPH than for the

new SPH. This is due to the larger area of the wind field for the old SPH. Near the MRGO and
Plaquemines Parish on the east side of the Mississippi river, the storm surges for the old and new
SPH are comparable. However, the higher surge extends farther into the Mississippi sound for the
new SPH. This is expected, since the eye passes over this area and the maximum winds near the eye
wall are higher for the new SPH. For track C it is clearly seen by comparing

Figure 7 (a) and (b) that the old SPH produces a higher storm surge for most of the area
of interest, except on the south shore of lake Pontchartrain around New Orleans east.
Figure 8 (a) and (b) show that the storm surge produced by track F is substantially lower
than for track A and C. Figure 9 (a) and (b) shows the maximum water surface elevations




produced by considering all tracks for the old and new SPH, respectively. Figure 10
through Figure 13 show the differences in computed water surface elevation (new — old)
for tracks A, C, F and considering the maximum of all tracks, respectively. The
difference contour plots more clearly demonstrate the differences in computed water
surface elevation between the old and new SPH.

Next, water surface elevation histories were computed at selected points in the
flood protection system in the New Orleans and surrounding areas. The elevation
recording stations are shown in Figure 14 and are grouped for plotting purposes into four
sections along the flood protection system. The maximum water surface elevations for at
each of the 22 stations are shown in Table () for each storm and the maximum of all
storms.

Figure 15 shows that along the south shore of Lake Pontchartrain, the old SPH
produces a maximum storm surge of approximately 5.5 meters whereas the new SPH
produces a maximum storm surge between 4 and 5 meters. For both storms the storm
surge is relatively constant at stations 2, 3 an 4, but is higher at stations 1 and 5. Also, the
storm surge peaks approximately 2 hours later for the old SPH. Figure 16 indicates that
the maximum storm surge in the New Orleans east section occurs at station 10 and is
approximately 7 meters. In the MRGO/IHNC section, Figure 17 indicates that a
maximum storm surge of 8 meters occurs at stations 13-16 and is approximately equal for
both storms. No appreciable flooding occurred at the west bank stations for track A and
so those stations are not plotted.

Figure 18 shows that track C produces significantly lower peak surge along the
south shore of Lake Pontchartrain than track A, with a maximum surge occurring at
station 1 of approximately 4.5 meters for the old SPH and just under 4 meters for the new
SPH. In New Orleans east, Figure 19 shows that the maximum storm surge occurs at
station 10 and is 6.4 meters for the old SPH and 4.4 meters for the new SPH. Figure 20
shows maximum surge occurring at station 11 of approximately 8 meters for the old SPH
and 6.4 meters for the new SPH. Stations 13-16 show a maximum surge of 7.8 meters for
the old SPH and 5.8 for the new SPH. On the west bank, Figure 21 indicates that the old
SPH produces significantly higher storm surge at stations 18 and 19 with at maximum
surge of 7.8 meters for the old SPH and a maximum surge of 5.0 meters for the new
SPH. Unfortunately, stations 20-22 indicate that the surge has not yet peaked for the old
SPH, indicating that the simulation ended before the maximum surge was captured. The
new SPH produces a maximum surge of less than 4 meters at those locations.

Elevation histories produced by Track F are shown in Figure 22 through Figure
25. In contrast to Tracks A and C, the new SPH produces higher storm surges for Track F
rather than the old SPH at the selected locations. This is not surprising, since the eye of
the storm passes over the city and the new SPH, although smaller has stronger winds near
the eye. It is seen from Figure 22 that Track F produces significant storm surge on the
south shore of Lake Pontchartrain and, in fact, produces higher storm surges there than
tracks A and C. At the other locations the storm surge is still significant, but not as high
as Track A or C.

The maximum water surface elevations at each recording station for each storm
track are presented in Table 2 as well as the overall maximum for both the old and new
SPH.




Conclusions

The study produced some unexpected results. Initially it was thought that the
stronger storm defined by the new SPH would produce higher storm surges, but that was
not always the case. It is clear from the maximum water surface elevation contours and
water surface elevation histories that the larger storm defined by the old SPH indices has
significant influence on the resulting peak storm surges at most locations of interest.
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Figure 6: Computed maximum water surface elevation SPH Track A, (a) old SPH, (b) new SPH
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Figure 9: Computed maximum water surface elevation, locus of Tracks A, C and F, (a) old SPH, (b)
new SPH




Figure 10: Difference in computed maximum water surface elevation (new-old), Track A




Figure 12: Difference in computed maximum water surface elevation (new-old), Track F.

Figure 13: Difference in computed maximum water surface elevation (new-old), locus of tracks A,C
and F.
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Figure 14: Elevation recording station locations grouped into sections.
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Figure 15: Track A SPH Elevation histories at selected locations along south shore of Lake
Pontchartrain in St. Charles and Jefferson Parish and New Orleans Lakefront.
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Figure 16: Track A SPH Elevation histories at selected locations along south shore of Lake
Pontchartrain in New Orleans East.
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Figure 17: Track A SPH Elevation histories at selected locations along MRGO, industrial canal, and
GIWW,
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Figure 18: Track C SPH Elevation histories at selected locations along south shore of Lake
Pontchartrain in St. Charles and Jefferson Parish and New Orleans Lakefront.
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Figure 19: Track C SPH Elevation histories at selected locations along south shore of Lake
Pontchartrain in New Orleans East.
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Figure 20: Track C SPH Elevation histories at selected locations along MRGO, industrial canal, and
GIWW.,
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Figure 21: Track C SPH Elevation histories at selected locations on West Bank.
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Figure 22: Track F SPH Elevation histories at selected locations along south shore of Lake
Pontchartrain in St. Charles and Jefferson Parish and New Orleans Lakefront.
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Figure 23: Track F SPH Elevation histories at selected locations along south shore of Lake
Pontchartrain in New Orleans East.
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Figure 24: Track F SPH Elevation historics at selected locations along MRGO, industrial canal, and

GIWW,
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Figure 25: Track F SPH Elevation histories at selected locations on West Bank.
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Table 2: Maximum recorded watcr surface elevations at selectcd recording stations.

Maximum Water Surface Elevation at Recording Stations

Track A Track C Track F Maximum

Station | Old New Old New Old New Old New
\ 54 4.3 4.7 4.1 3.7 Sl 5.4 5.7
2 5.5 4.2 4.1 S B4, 5.7 5.5 5.7
3 4.8 3.5 3.7 2.9 3.0 4.9 4.8 4.9
4 4.8 34 3.0 2.4 2.7 4.7 4.8 4.7
5 e 3.5 2l 1.7 1.7 4.1 SED 4.1
6 5.3 3.5 1.0 0.8 1.6 2.8 5.3 3.5
7 5.0 3.3 2.0 2.0 1:5 1.5 5.0 33
8 4.7 3.5 2.6 2.0 1.8 1.7 4.7 355
9 6.8 6.7 5.3 35 2.9 8157 6.8 6.8
10 9.1 9.1 6.8 5.0 4.6 Sh2 9.1 9.1
11 8.0 8.0 8.0 7.0 D], SE2) 8.0 8.0
12 6.5 6.7 6.1 4.8 3.7 5.1 6.5 6.7
13 8.0 8.5 7.5 SES 4.4 6.5 8.0 8.5
14 7.9 8.2 7.4 S, 4.1 6.7 7.9 8.2
15 7.8 8.1 7R 5.4 4.0 6.5 7.8 8.1




16 |77 8.0 7.1 5.4 3.9 6.5 7.9 8.0
17 6.0 6.2 5.5 43 2.7 5.0 6.0 6.2
18 [0.0 0.0 7.5 5.0 1.8 1.8 7.5 5.0
19 [0.0 0.0 73 4.8 1.2 ) 73 4.8
20 [0.0 0.0 4.5 s 0.7 1.1 4.5 8.5
21 [0.0 0.0 45 3.6 .7 1.5 4.5 3.6
22 |00 0.0 3.0 3.6 0.0 0.0 3.0 3.6
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Ocean Modeling

Task 1. Model Hindcasting in Smart Climatology
Collaboration with: James Dykes', Lucy Fitzgerald Smedstad’

Research Objectives: This project aims to develop concepts and techniques that clearly define
smart climatology for strategic planning for ASW, SPECOPS and MIW, enabling superior
analysis of environmental variability to support tactical decision planning. Ultimately, smart
climatology is to take into account the effects on strategic planning of tactical extremes in ocean
and atmospheric conditions caused by the large-scale climatic variations. A demonstration of
this project is planned to provide the guidance for future potential transition of an end-to-end
capability to the war fighter. The portion of this project requiring HPC resources involves
running (MetOc) models for long historical periods with the goal of providing quick-turn-
around results on demand.

Methodology: MSRC resources were utilized in generating the data and information based on
running atmospheric and oceanographic models over a long period of time in the past, also
known as hindcasts. A high resolution tactical scale climatology dataset required for knowledge
extraction was generated by an air/ocean/wave coupled system, which has been constrained b g
relevant large-scale climatic variations. The system components include COAMPS™,
WAVEWATCH III, NCOM, and SWAN for creating strategic and tactical climatologies in
data-sparse and data-void areas, creating a three-dimensional depiction of the atmosphere and
the ocean over a three-year period (1997 through 1999). This period is limited in time to cover
the anomalous events of an extreme El Nifio and La Nifia for demonstration, and is expected to
expand in later work. Certain parameters are extracted depending on the mission scenario.
Ultimately, all the models will be closely coupled under ESMF, but for now they were run
separately. The ocean models used forcing provided by either NCEP/NCAR Reanalysis or
COAMPS® run at NRL Monterey. Global NCOM output provided the boundary conditions for
the regional NCOM.

UNO contribution: NCOM in a 2 coupled nest configuration were run from midway in 1997
through 1999. All the resulting model output files including the complete atmospheric model
outputs were stored on the Sun-Fire-15000 (vincent) at NAVO MRSC server occupying about
15 terabytes total. This server provided a convenient means for data sharing amongst team
members. The processed output was passed on to NRL-7440 to be used in pattern analysis
procedures resulting in information that will allow to examine and validate the types of data
and statistics that may impact strategic planning.

Task 2. Relocatable NCOM
Collaboration with: C. Rowley, R. Allard, E. Coelho

Research Objectives: The main purpose of this project is to develop and evaluate a real time
ocean prediction system developed at the Naval Research Laboratory (NRL) in support of naval
operations. The system is portable on several computer platforms and operating systems, and
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rapidly relocatable. Analysis and prediction are available for any part of the world usually
within a few hours from the request, making it a particularly useful system in emergency
situations. The major challenge is to offer a default set of parameters that can provide accurate
solutions for any given configuration, yet allowing the flexibility of tuning and calibrating for a
given domain configuration. Since is it unrealistic to assume data are available at the spatial
and temporal resolutions necessary for specification of the boundary conditions, the system has
the capability of multiple 1-way nesting from basin-scale to regional to high-resolution coastal
domains.

Methodology: The relocatable system was evaluated in several realtime configurations in
support of NAVO operations and other research joint program.  While the exercises at NAVO
have the support of allocated computer resources, other realtime applications are sensibly
constrained by the computational requirement and a timely deliver of the solution

| UNO contributions: in FY 2006-2007, the relocatable system was evaluated in 2 major
realtime exercises:

1. SW_06 (Shallow Water 2006) a joint experiment with NRL and other academic
institutions (Rutgers University being the leader organization) off the New Jersey coast.
Relo NCOM was configured in 3 nest domains with a horizontal resolution ranging
from 2.5 to .6 km. the inner nest was designed to capture the internal wave activity at
the shelf break and provide accurate forecast to the acoustic group.

2. MREA 07 (Marine Rapid Environmental Assessment 2007). One of the NRL
contributions to the exercise was to provide, in realtime, ocean forecasts in support of
the operations at sea. The NRL prediction system, was configured with 3 nesting
domains at resolutions of 4, 2, and 0.6 km. Two separate inner nests were configured
for the BP_07 (Elba) and LASIE (LaSpezia) areas of operations, respectively. For this
application, no data were assimilated in rcaltime. However, a small (10 members)
ensemble of free-runs was used for water column temperature forecast Root Mean
Square (RMS) error prediction. Ocean forecast arc usually the final component of a
long string of products developed at several different centers: a delay in acquiring one of
the input data, the classic computer breakdowns (just to mention a few issues) may
create a domino cffcct and ultimately a late delivery of the forecast.  Preliminary
model/data comparison and new simulations in a pseudo forecast mode, but with
different model parameters (such as increased vertical resolution) highlight the skills and
limits of the default configuration.

Presentations:

G. Peggion: How to develop a relocatable prediction system. OGS Trieste, May 19 2006

G. Peggion: A Rapidly Relocatable Ocean Prediction System: Congress SIMAI 2006. Baia S.
Samuele, Italy,May, 25,2006

G. Peggion: A realtime Ocean Prediction System: Rapid Environment Assessment Conference,
Lerici, Italy. Sept 25-27, 2007

Publications:

|y



Rixen, M. et. al.; 2007: Super-ensemble forecasts and resulting acoustic sensitivities in shallow
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processes :challenges for monitoring and prediction’. (in press)

Coelho, E et al.; 2007: A note on NCOM temeprature forecast error calibration using the
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Lerici, Italy. Paper to be published on a special issue in the Journal of Marine Systems focused
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A NOTE ON NCOM TEMPERATURE
FORECAST ERROR CALIBRATION

USING THE ENSEMBLE TRANSFORM

Emanuel F. Coelho'*", Germana Peggion'”, Clark Rowley', Gregg Jacobs', Richard
Allard' and Elaina Rodriguez’
'Naval Research Laboratory, Stennis Space Center, MS-USA
*University of Southern Mississippi, MS-USA

3University of New Orleans, Louisiana, LA-USA

Abstract:

During the MREAO?7 trial, off the NW coast of Italy in the late spring and summer of 2007, Navy
Coastal Ocean Modeling (NCOM) multiple nests free run ensembles were made available in real-
time for the LASIEO7 and BP07 events and a fairly complete set of observations were collected
inside the inner nests domains. This note addresses the problem of predicting NCOM local
unbiased 0-24 hours forecast errors by perturbing a limited number of possible error sources
through Monte-Carlo simulations, without local data assimilation. It discusses preliminary results
using the Ensemble Transform (Bishop and Toth, 1999) to calibrate the ensemble spread by
adjusting its characteristics (spread-skill relationship and magnitude) to an observed or pre-
estimated error field. A small (10 members) ensemble of free-runs was used for water column
temperature forecast Root Mean Square (RMS) error prediction. After being post-processed they
were compared with observed errors and those estimated using time variability as an error proxy.
The ensemble runs were generated through atmospheric forcing perturbations using the space-

time deformation method as proposed by Xiandong, et al., (2007), keeping independent initial
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conditions. Because at the starting time all runs shared the same IC, the ensemble was run for
roughly two weeks for spinning up and then used during the following 10 days for data
comparisons, during which the ensemble spread did not diverge and was consistent with the
observed dynamics. Comparisons of ensemble spread of temperature profiles with local observed
errors and time variability (assumed as an error proxy) showed they were consistent through this
10 days analysis period, with performances above the non-calibrated ensemble estimates and

time-variability used as error proxy.

Key words: Ocean Ensembles, Forecasting, Ocean Models, Forecasting Errors, Environmental

Assessment (43-45N, 9-10.5E)

1. Introduction

When considering numerical prediction of ocean dynamic states using nested domains, several
sources of error can contribute to cascading uncertainty into state variable estimation (Coelho and
Rixen, 2008). These sources of error include the errors of the initial and lateral boundary
conditions, local forcing, bathymetry errors, numerical approximations and filtering, errors due to
approximations when assimilating observations, errors in the forcing terms and un-resolved scales
(sub-grid variability). To address this problem, local unbiased (correlation) and persistent errors
(bias) of the Navy Coastal Ocean Modeling (NCOM) System nested in global ocean domains, are
typically reduced and monitored by assimilating dynamical balanced analysis fields of state
variables, derived from observation networks, using the Navy Coupled Ocean Data Assimilation
(NCODA) system (e.g., Cummings 2005). This system also provides an error estimate of these

analysis fields at an analysis time.




In recent implementations (Coelho et al., 2008; Fabre et al., 2008), ensemble based stochastic
methods have been used to track these NCOM analysis multi-scale ocean errors by running the
model several times using different forcing and starting from different initial conditions. The
resultant ensemble spread was constrained at each new analysis time by the new estimate of the
analysis errors using a technique named Ensemble Transform (ET) (Bishop and Tott, 1999). In
order to be accurate, the perturbed ensemble members should be taken from a fairly large number
of independent runs to resolve state variables error covariances and should include all significant
sources of error and uncertainty (Judd, et al., 2007, Lermusiaux, et al., 2006). Since this is not
easy to obtain in operational timeframes, and once a smaller number of runs are selected, one can
expect the ensemble to perform differently inside the simulation domain and through time
depending on the number of the dominant error modes. This limitation motivates on-going work
in developing dedicated metrics to diagnose and prognoses ensemble performances through the

overall domains and forecasting lead times.

In any case, it is anticipated that a small number of runs may still provide useful information
under certain conditions (e.g. when there are no strong non-linearity and bias errors are on the
same order of magnitude of the correlations errors). Furthermore, if the ensemble estimates define
a domain that contain the most relevant features and scales of the physical system, then they can
be improved in their consistency through calibration and post-processing by adjusting their spread
and bias to some training sequence. These methods have been successfully used for
meteorological ensemble calibration (e.g.Doblas-Reyes, 2005; Hammil, 2007) and for multi-

model ocean ensembles applications (e.g. Rixen and Coelho, 2007; Coelho, 2008).

It should be noted that with a small number of independent runs we should not expect to resolve

the full ocean state covariances with the original model grid resolution, but one can expect a




small number of runs between 10-15 may still bc adequate to track single variable forecast errors
on a re-sampled spatial domain as long as the number of indcpendent variables can be kept within
the order of O(10°), following the estimates of Judd (2007). This note will discuss the limitations
of a small ensemble size used during the MREAO7 trial and proposes a method to improve
forecast error prediction consistency for specific target variables, applicable also for non-statc
variables estimates when there are not many observations or prior to use observations into the

assimilation process.

Several methods have been used to perturb the initial conditions fields based on the observed
errors. In particular Bishop and Toth (1999) proposed a technique named Ensemble Transform
that allows computing dynamically balanced initial conditions perturbations that are consistent
with a best estimate of the error covariance. On the other hand, ensemble calibration can also be
sought through post-processing using Bayesian methods (e.g. Gneiting, 2004, Coelho, 2005 and
Rixen and Coelho, 2005), within the limits of the known cross-correlations among the observed
and modeled variables. This work combine both techniques as a post-processing method, applied
to local single variable ensemble spread calibration. The methodology uses the perturbed model
statistics re-scaled through an estimate of the error variance, to obtain short term estimates of

posterior normal probability distributions envelopes of a selected ensemble variable.

The MREAO7 (BP07 and LASIE trials), took place off La Spezia, Italy in the spring and summer
of 2007 (e.g., LeGac and Hermand, 2007). During the trial, mesoscale relocatable NCOM
implementations using the RELO system were made available in real-time without performing
local data assimilation, though remote sensing and global data was assimilated on the outer nests
used for boundary conditions and initialization. In standard implementations the RELO system
runs together with the Navy Coupled Ocean Data Assimilation (NCODA) system that performs

observations quality control and produce local analysis for assimilation that in the present version




are based on a Multi-Variate Optimum Interpolation technique (e.g. Cummings, 2005). NCODA
also provides the analysis error fields that are used to re-set the ensemble spread of the initial
fields in operational ensemble runs using the same ET technique (e.g. Fabre et al., 2008). This
present solution does not provide reliable analysis error covariances but it is planned the NCODA
system will evolve in the near future into using hybrid Monte-Carlo ensembles (e.g. Lermusiaux
et al,, 2006) and Variational analysis (e.g. Nogodock, et al., 2007). This will improve error
covariance estimates and produce analysis fields consistent with the boundary conditions and
other forcing fields. For this specific implementation, the NCODA assisted assimilation process
in the inner nests was turncd off to allow a fully independent analysis of the model results and

observations, simulating a scenario where no local data would be available in useful timeframes).

During this trial the free-run error fields of the RELO system were estimated using an ensemblc
of 10 independent runs with independent initial conditions starting from a common field far back
in time and perturbed through atmospheric forcing using space-time deformation of the surfacc
forcing fields (Xiandong, 2007). The ensemble spread of the free runs was then re-scaled in post-
processing through an Ensemble Transform (Bishop and Toth, 1999) using the temporal
variability as an error proxy. These preliminary error estimates were then used for model
benchmarking and aiming specific ocean-acoustic applications (e.g. Carriere et.al, this volume)

and to estimate the relative impact of different observational strategies (Coelho et al., 2007).

2. RELO-NCOM Setup

The Relocatable Navy Coastal Ocean Model (RELO-NCOM) is a scalable, portable, and user-
friendly system for nowcasting and short-term (2-3 day) forecasting simulations (Rowley, 2007).
There are two major components: 1) NCOM (Martin, 2000) and 2) the Navy Coupled Ocean Data
Assimilation (NCODA) (Cummings, 2005) for data analysis and model initialization. For a rapid

configuration, the system relies on a set of data and products available on a global scale




(bathymetry, winds, analysis of the remote sensing data). These products are generally on a low
resolution and it is possible to substitute them with local and high-resolution databases. RELO-
NCOM meets the naval requirements to generate real-time description of the environmental

variables and it is operational at the US Naval Oceanographic Office (NAVO).

There is a fundamental difference between assessing an ocean model configuration in a research
and an operational mode. Both need to be designed, calibrated, and evaluated to encompass the
dominant dynamics of a given region. The goal is to provide the best possible representation of
the dynamical features of a specific area. However, a predictive system that supports operational
applications must be rapidly relocatable anywhere in the ocean (oil-spill response and naval
operations are the most relevant applications), and easily reconfigured. The principal goal is to
provide good representations everywhere with the available data (i.e., in spite of the absence of
complete sets of observations), motivating the need to associatc with the system a reliable error

diagnostics and prediction tool, to allow tracking consistently the error dynamics.

For the MREAO?7 trial the RELO-NCOM was deliberately set on its default mode as for a generic
application with little or no tuning of the physical and numerical parameters. Furthermore, no
MREAO7 or other data were assimilated into the inner nests. The goal of this implementation was
to test the modeling skills of these free runs and estimate the relevance of the atmospheric forcing

as a single source of error.

The daily predictive cycle during MREAO7 is described as follows:
e NCOM is started from the previous day’s nowcast (-24 hr) and forced by the available
operational winds. Open Boundary Conditions (OBC) are extracted from the simulation
of the parent domain. The OBC for the outer most nest are extracted from NCOM

configured on a global scale at a 1/8° resolution (NCOM-GL) which is operational the




Naval Oceanographic Office (NAVO)
(http://www7320.0rlssc.navy.mil/global_ncom/index.html) (Barron et al, 2006).
However, this procedure is not restrictcd to NCOM-NCOM nesting; any nest could be
coupled with several other dynamical model formulations.

¢ During the nowcast, temperature (T) and salinity (S) fields are nudged to the nowcast
fields of the parent simulations. The nudging during the hindcast phase has been
suggested to provide a minimum connection with realtime data since NCOM-GL
assimilates sea surface temperatures (SST) and Modular Occan Data Assimilation System
(MODAS) synthetics (with the surface height derived from the Naval Layer Ocean
Model (NLOM) (http://www7320.nrlssc.navy.mil/global_nlom/). No data are nudged
after the nowcast (0 hr).

e A short-term (2-day) forecast is provided. The 48-hour interval has been chosen because
this is the typical period in which meteorological mesoscale forecasts are available and
reliable.

¢ The nested domains run then in sequencc using boundary conditions from the outer nests
(i.e., one way nesting). Although NCOM provides a tile nesting approach, the default
procedure allows an easy and rapid configuration and assessment of each domain, and
more importantly, a possible different choice of the vertical coordinate between nests.

Fig.1. illustrates the triple nested configuration for the MREAO7 exercisc.

In this model configuration, all domains are forced with the Coupled Ocean Atmosphere
Mesoscale Prediction System (COAMPS®') Europe-2 winds (27km) (Hodur, 1997) and heat
fluxes from 0.5° Navy Operational Global Atmospheric Prediction System (NOGAPS, Rosmond
et al., 2002). Monthly river discharges are extracted from the global river data set of NCOM-GL

(Barron and Smedstad, 2002), with the Amo, Magra, and Serchio transports provided by the

" COAMPS is a registered trademark of the Naval Rescarch Laboratory




Istituto Idrografico Italiano. The vertical resolution of each domain has 38 o- and 7 z-levels (45
levels). The outer nest (nest0) is at 4km horizontal resolution with the primary purpose of serving
as a buffer zone between NCOM-GL’s NOGAPS forcing and the higher resolution wind data set.
Nest I (2km resolution) include tides. Tides are specified at the boundaries from the Oregon State
University tide model (Egbert and Erofeeva, 2002). Nest2 and nest3 are at about 0.6km resolution
and configured for the BPO7 (Elba) and LASIEQ7 (LaSpezia) domains, respectively. An ensemble
of 10 independent runs of the inner nests was also made available in realtime, using similar set-
ups but with perturbed atmospheric forcing using the space-time deformations method

(Xiandong, et al., 2007).

[ FIGURE 1]

One of the most pressing issues of realtime operational forecasting is to provide the information
in a timely manner. Ocean forecasts are usually one of the final components of a long string of
products developed at several different centers: a delay in acquiring one of the input data (e.g.,
winds, boundary conditions), the classic computer breakdowns (just to mention a few issues) may
create a domino effect and ultimately a late delivery of the forecast. In order to avoid delays in
the queue submission which are often occurring at the supercomputer sites, the full forecast cycle
is performed at the Naval Research Laboratory - Stennis Space Centre (NRLSSC) on dual
processor Opteron-based LINUX platforms. The latest NOGAPS and COAMPS analysis and
forecasts are usually available at NRLSSC before 1000GMT, but NCOM-GL daily hindcasts and
forecasts arrive at about [130GMT. Therefore, to speed up the delivery of the results, the OBC
for nest0 are extracted from the NCOM-GL 72hr forecast of the previous day. This makes it

possible to start the simulations at about 1000GMT and complete the forecast cycle usually

before NCOM-GL latest files are available at NRLSSC. Unfortunately, only a partial COAMPS




data set is archived at NRLSSC, so the price for this procedure is the use of NOGAPS-0.5 heat

fluxes.

The model results are written to NetCDF files at user specified z-levels and time increments. It is
important that the z-levels be consistent with the NCOM vertical grid. A coarse vertical
resolution in the NetCDF files may remove features reproduced by the model; a too fine vertical
resolution increases the computational cost and memory requirement without increasing the
physical accuracy of the solutions. For this real-time exercise, the NCOM fields were provided
on 47-levels and at a lhr increment. To reduce the amount of transferred data, only the 48 hr
forecast (i.e., no hindcast) of the model and only a few upper vertical levels for the ensemble
spread were posted on the MREAOQ7 ftp server, generally at about 1230GMT and 1500GMT,

respectively.

3. RELO-NCOM Control Analysis and data comparison

This note will focus the analysis and discussion for the period June 10 to 25, 2007 and for the nest
3 area only. In this region, dynamics were mostly dominated by a persistent cyclonic gyre
centered roughly at 43 40N and 9 20W, modulated by smaller re-circulation cells north and east,
closer to the coast. The shapes and temperature distributions of these smaller cells was strongly
perturbed by the wind forcing. During the “sirocco” south-easterly winds (e.g. 06/19 06:00
snapshot displayed in Figure 2, left panel) the average surface temperatures were higher, with
warmer waters trapped closer to the eastern coast. During the “libeccio” south-westerly winds
((e.g. 06/23 12:00 snapshot displayed in Figure 2, right panel), the cold eddy signature becomes
more noticeable and different recirculation patterns can be found between the eddy and the

coastline.

[FIGURE 2]




The Sea Surface Temperature (SST) images obtained from NOAA AVHRR displayed in Figure

3, although with different resolutions, concur with the analysis of the previous paragraph.

The water column was strongly stratified during the whole period. Model temperature hindcast
and forecast estimates were compared with 160 CTD profiles collected during the trial in the
period June 4-26, 2007 by three ships in the area (RV Planet, RV Leonardo and NI Galatea). The
daily CTDs’ covered both deep and shallow water throughout most of the surveying time. For this
work only profiles inside the nest 3 domain were used. For each CTD, the nearest (in space and
time) hourly model profile was extracted. No horizontal or temporal interpolation is performed on
the model or data. Since observations are on a higher vertical resolution relative to model
estimates, the model temperature at a specific z-level should be compared with the mean value of
the observed values between the intermediate levels up and below (i.e. for the model estimate T;
at level Z;, observations should be averaged between the levels (Z;,+Z;)/2 and (Z;+Z;1)/2). The
model data comparisons displayed in Figure 4 show that temperature errors were more noticeable
on average at the bottom of the well mixed layer (at roughly 50m depth), with the surface waters
typically cooler than observations and warmer waters below. Temperature crrors wcre very small
bclow the 200m depth. It is also noticeable these error characteristics did not change significantly
during the analysis period, though significant changes occur in the forcing and dynamic responses

as mentioned above.

[FIGURE 3]

From these comparisons one can assume the prediction skills of the model were limited, not
significantly above model persistency, such that these free-run RELO-NCOM fields could be

considered as an analysis tool capable of providing reasonable spatial distributions of the
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temperature fields, up to at least 48 hours. This is mostly due to the persistent nature of the
dominant local dynamics that did not change significantly during the analysis period. In other
more dynamic areas one could expect thcsc frec-run errors to increase significantly after a few

hours and differences between forecast lead times also to become more noticeable.

Since there were no significant differences between these errors, the discussion below regarding
error prediction will use the 0-24 hours and 2448 hours temperature forecasts as equivalent

estimates.

4. Ensemble re-scaling using the Ensemble Transform

The ocean is driven by surface fluxes that are determined by the atmospheric statc and are one
major source of uncertainty. Predicted atmospheric fields often contain the forecast feature of
interest, but they can be misplaced in space and time (e.g. Hoffman 1995). This characteristics
motivated attempts to represent forecast errors in terms of a shift of a forecast in space and time
similar to the pseudo-random fields method described by Evensen (2003) and applied in ocean
ensemble generation problems (e.g. Demirov, et al., 2003). For the present work, the atmospheric
forcing perturbations used to force the ocean ensemble members were produccd using the method
developed by Xiandong et al. (2007). It uses only timc shifts of the forecast, with a choice of
parameters to provide a good precision in the atmospheric perturbations, though accuracy may

not be guarantee ovcr the whole simulation pcriod.

[FIGURE 4]

If we neglect bathymetry, error induced by numerical approximations and other sources of
possible model bias, the ensemble transform (ET) method of generating initial perturbations

applied in atmospheric ensemble forecasts (Bishop and Toth, 1999) can be used to re-balance and
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re-shape the IC fields of the ensemble subset. Besides assuring all detected error growing modes
will be equally represented, the advantage of this technique is such that: it respects hydrodynamic
balances by ensuring that initial perturbations are a linear sum of forecast perturbations from the
preceding forecast; and ensures that the initial perturbations are equally likely and orthogonal
under a measure of the probability of initial condition error based on the best available estimate of
initial condition error variance. This technique does not provide though an initial set of
background perturbations that need to be introduced using complementary methods, such as

forcing from an ensemble of atmospheric forecasts as mentioned in the previous paragraph.

As detailed in Toth and Bishop (1999), through the ET ensemble generation technique, K forecast
perturbations of N state variables X° (NxK), can be transformed into a set of perturbations X"

that are consistent with the background error analysis covariance P; , using

X =XT
where T is a transformation matrix determined by the eigenvectors and eigenvalues of the
projections of the magnitude of the predicted analysis perturbations on the inverse of the error
analysis covariance matrix. If the number of ensemble members equals the number of state
variables, this projection guarantees the perturbations covariance to be equal to the error

covariance.

Through this transform we can then obtain a set of perturbed fields that are consistent with an
independent estimate of the error covariance. In operational implementations these initial fields
are used as new initial conditions for the K independent ensemble runs, providing a method to
assimilate the observed errors into the ensemble forecasts. For the present application and to use
this method in post-processing a persistency assumption during the 48hours forecast cycles is

taken, regarding the projection of the ensemble covariances into the observed errors.

12




5. MREAO07 Error Predictions
For the present application since no data is to be used the ET is computed using the temperature

48 hours forecast time variances, as estimated by thc RELO-NCOM free runs, producing a
diagonal error covariance matrix P: . Besides allowing for a faster transform, this approach

allows to keep the shapes of the off-diagonal terms (spatial cross-correlations) as estimated by the
enscmble, while consistently re-scaling the analysis errors, without introducing further analytical

or numerical approximations.

The temperature estimates ensemble spatial correlations are then updated only by the RELO-
NCOM independent runs. This method allows keeping error covariance updates, without the cost
of computing and inverting very large matrices. Furthermore, since only a limited numbcr of
ensemble members are available, this method limits the growth of spurious cross-correlations.

The same transform matrix T is applied to all time steps of the ensemble estimates.

The resulting ensemble spread (standard deviations) for each temperature estimate are then
compared against the absolute value of the RELO-NCOM vs. data mismatches and displayed in
scatter diagrams as those shown in Figure 5 for days Jun 13 and 14, before and after applying the
ET. The statistical significance of each of these individual estimates (small blue dots) is
negligible, such that they are grouped in equally populated bins with 1000 elements, defined
along the ensemble spread axis. These bins displayed inside the scatter diagrams as large red dots
will have similar likelihoods and will be statistically relevant. For the ensemble to be accurate,
bins should be aligned along the main diagonal, highlighted as a black line on the plots. The

green rectangles around the bins show the standard deviations of each bin along each axis (error
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and ensemble spread). Other relevant statistic is the mean ratio between measured error vs.

ensemble spread, (Err/Std in the figures) that should be close to 1 for the ensemble to be accurate.

[FIGURE 5]

The graphics in Figure § left of the black line show the scatter diagrams for days 13 (left upper
plot) and day 14 (right upper plot) computed from the cnsemble before post-processing. From the
bin distribution we can see the ensemble to have a positive spread-skill relationship, through all
ranges of the observed errors, such that estimates of smaller ensemble spread are well correlated
with smaller errors and estimates of larger error are well correlated with the larger errors, through
all ranges of observed errors. However, we can see the ensemble was grossly under-predicting the
magnitudes of the observed errors in roughly one order of magnitude. This is most likely due to
the fact the initial fields and other major sources of error besides atmospheric forcing wcre not

being properly perturbed.

The data of June 13 was used as the initial day to start the procedure and adjust the ensemble
spread to the observed error. For this purpose, a multiplication factor of 4 was estimated from the
data and applied to the temporal standard deviations used to compute the ET throughout the
simulation period. This value was estimated iteratively in order to bring the ratio Err/Std from a
value of 11 before the transform to 1. As a result, the red bins also became closer to the main
diagonal as we can see on the scatter diagrams right of the vertical black line in Figure 5. For the
following day represented by the 24-48 hour forecast this ratio increased slightly to 1.5, though

the bins remained close to the main diagonal.

Other relevant result from Figure 5 is the spatial distribution of the error estimates. In the lower

color maps one can see the ensemble spread at the surface for days 13 and 14. The black crosses
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show the points were data was collected during those days respectively. One can see the spatial

patterns were not strongly changed by the transform and the areas with larger estimated errors are
shaped along the boundaries of the persistent cyclonic eddy in the SW portion of the domain as
one could expect. The sampling locations during these two days included several runs across the

boundaries of this cyclonic gyre.

Since the ET was using the temporal standard deviation to re-scale the ensemble spread one could
argue that the information contained in the ensemble would be erased and time variability would
be the dominant error-proxy. In order to evaluate this hypothesis the same scatter diagrams were
computed using the temporal standard deviation instead of ensemble spread, as displayed in
Figure 6. To keep an equivalent accuracy a multiplication factor of 7.8 was also applied to set the
ratio Err/Std to 1 for the day 13 data. From the scatter diagrams one can see this error proxy keeps
similar positive spread-skill relations, though the spatial distribution of errors is significantly
different from those estimates by the ensemble and not so well correlated with the dominant

dynamics.

Using the tuning parameters estimated for day 13, one can estimate the ensemble spread and the
time variability error proxy for the following forecast days. Since observations were made until
June 25, Figure 7 display the same diagrams for the last two days of June 24 (0/24 hours in the
labels) and 25 (24/48 hours in the labels) when model-data comparisons were possible. The four
plots panel in the left shows the results using the transformed ensemble and the panel in the right
shows the same results using the time variability proxy. One can see the ensemble spread was
kept consistent with the dynamics and the performance of both the transformed ensemble and
time variability as error proxy seem close in performance. However, looking to the spatial
distribution of the predicted surface temperature errors as displayed in the lower color maps for

days June 24 and 25 one can see the ensemble responded consistently with the “Sirocco” and

LS




“Libeccio” wind events, spreading the areas of larger uncertainty around the cyclonic eddy, not so

well represented by the time variability proxy.

[FIGURE 6]

In order to obtain more objective performance estimates, daily performance statistics were
computed as displayed in table 1. These include the ration Err/Std as an estimate of the error
estimate accuracy, the bins correlation coefficient (C) as an estimate of the spread-skill and the

bin deviation from the main diagonal (Bin Bias - BB) as an estimate of the error estimates bias.

[FIGURE 7]

Overall, during the period June, 13 to 25 the positive spread-skill was kept for all estimates
(ensemble with and without transform and time variability), with the ensemble performing
slightly better showing a 0.8 correlation coefficient among the bins while the time proxy had a 0.7
coefficient. The ratio Err/Std was also kept consistently through this period such that on average

through this period the ensemble value was 13.4, the ET was kept as 1 and the time proxy as 1.1.

The mean differences between bin coordinates (i.e. deviations from the main diagonal) can also
be used as an error bias estimate. Through this 12 days period (June 13 to 25) the ensemble
estimates after the transform remained unbiased while the original ensemble had a value of 0.4

and the time variability proxy showed also a negligible negative bias of 0.03.

6. Concluding Remarks
The work presented above showed that some level of predictability of stochastic environmental

variables through numerical modeling could be achieved using Monte-Carlo methods, producing
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ensemble based error estimates along with the predicted state variables, even using a limited
number of ensemble runs. However, the system performance will be space and time dependent
requiring an accurate metrics system to produce both diagnostics and prognostics of the precision

and accuracy of the outputs.

The Ensemble Transform (ET) approach was successfully applied for free-run ocean Mesoscale
error prediction calibration, by re-scaling RELO-NCOM ensembles produced through
atmospheric perturbations. Independent data was used for this analysis where the model runs
were not assimilating any local data. Results show the ensemble spread did not diverge and was
consistent with the observed dynamics throughout the simulation period. The ensemble showed a

positive spread-skill through all ranges of the observed errors.

Comparisons of ensemble spread of the temperature profiles with local observed errors and time
variability (assumed as an error proxy) showed they were consistent through a 12 days analysis
period. The ET calibrated ensemble had slightly better performance statistics then the time-
variability error proxy, most likely due to the fact the ensemble predicted errors were bctter

correlated with the local observed dynamics.

Results show the ensemble spread did not diverge and was consistent with the observed dynamics
throughout the simulation period. Furthermore, comparisons of ensemble spread of the
temperature profiles with local observed errors and time variability (assumed as an error proxy)
showed they were consistent through the 12 days analysis period, with performances above the
non-calibrated ensemble estimates and time-variability used as error proxy. Overall error
estimates became unbiased and the system was able to accurately separate large errors from

smaller errors with a positive spread-skill relationship, through all ranges of the observed errors.
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Table 1 — This table shows the daily mean values of the ration between individual observed error

magnitudes vs the correspondent ensemble standard deviation(Ert/Std), the correlation coefficient

or linear regression slope of the 1000 point bin averages (Corr.Coef) and the difference between
the bins ensemble standard deviation and bin errors in degrees C (Bin Bias BB). Each one of
these estimates was computed for the ensemble withouth post-processing (Ens), with the ET post-
processing (ET) and for the post-processed time variability used as an error proxy (Time). The

raw at the bottom shows the overall averages during the experiment.

Day Err/Std Corr.Coef. Bin BIAS (BB)
Ens ET Time | Ens ET Time | Ens ET Time
06/13 11.0 1.0 1.0 0.84 0.84 0.75 03 0.0 0.0
06/14 16.3 1.5 1.5 0.74 0.73 0.67 0.4 0.1 0.1
06/17 | 203 1.6 1.8 0.79 0.80 0.55 0.3 0.1 0.2
06/18 10.0 0.8 1.0 0.67 0.67 0.89 0.5 -0.2 0.0
06/20 17.4 1.4 1.8 0.48 0.53 0.38 04 0.1 0.2
06/21 12.1 0.9 1.0 0.89 0.90 0.85 0.3 0.0 0.0
06/22 10.3 0.8 0.9 0.85 0.86 0.76 0.3 -0.1 -0.1
06/23 13.0 1.0 0.9 0.90 091 0.90 0.3 0.0 0.0
06/24 11.9 0.8 0.6 0.85 0.85 0.94 0.2 -0.1 -0.2
06/25 11.9 0.8 0.7 0.70 0.69 0.46 1.3 -0.3 -0.5
MEAN | 134 1.0 1.1 0.8 0.8 0.7 043 0.00 -0.03
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Fig.1. The triple nest configuration for MREA_07.

Fig. 2 — RELO-NCOM upper layer temperature snapshots for the days 06/19 (left panel) and
06/23 (right panel). The shapshots hours, displayed in the images, correspond to the wind
maximum stress for each day. During the 19" winds were predominantly south-easterly
(“Sirocco”) and during the 23" they were predominantly south-westerly (“Libeccio”). Both
panels display how flow patterns changes around the persistent gyre in the South-West comcr,

with warmer waters intruding northward during the “Libeccio” event.

Fig. 3 — NOAA AVHRR Sea Surface Temperature estimates for 06/19 (left panel) and 06/23
(right panel). During the 19" winds were predominantly from the south-east (“Sirocco”) and
during the 23" from the south-west (“Libeccio”). Images were produced by automatic processing

using NURC TERASCAN software.

Fig. 4 - RELO-NCOM water temperature bias and RMS error estimates. The four panels in the
left show the RMS errors along each simulation day (24 hours period), using different model
estimates compared with the observations. The color plot named “A04” in the upper left uses
hindcast atmospheric forcing fields, the plot named “Pers” uses model persistency (hour 0
snapshot) and the plots below named “F24” and “F48” use 24 and 48 hours lead forecasts
respectively. The four panels in the right show the error bias (24 hours mean errors) using the

same model estimates.

Fig. 5 — Error scatter plots computed using the run of June 13. The upper scatter diagrams show

the ensemble spread vs. observed forecast error before re-scaling (Figure 5-a) and after re-scaling

23




(Figure 5-b). The forecast errors were computed using the 0-24 hour forecasts (panels in the left)
and using the 24-48 hour model forecasts (panels in the right). The color plot below each scatter
diagrams show the surface temperature error estimate (ensemble standard deviation) at hour
00:00 (left) and 24:00 (right) relative to the simulation day and the white crosses depicts the

locations used for model-data comparison.

Fig. 6 — Same as Figures 5-b, but using the time variability as an error proxy instead of the

ensemble spread as an error estimate

Fig. 7 - Same results as described for Figure 5-b (on the left) and Figure 6 (on the right) but for
the model run of June 24. The panels left of the vertical line show the results using the calibrated

ensemble. Panels in the right show the same results but using the time variability as an error

proxy.
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Abstract

Multi-model Super-Ensembles (SE) which optimally combine different models, have
been shown to significantly improve atmospheric weather and climate predictions.
In the highly dynamic coastal ocean, the presence of small-scales processes, the lack
of real-time data, and the limited skill of operational models at the meso-scale have
so far limited the application of SE methods for acoustic Rapid Environmental
Assessment purposes. In the framework of the BP07 experiment conducted South
East of Elba, sound speed prediction skills of various SE techniques combining
operational model outputs and in-situ measurements are assessed. Results suggest
that SE-based predictions provide more robust 24hr forecasts. A detailed acoustic
propagation sensitivity study at different frequencies and ranges also reviews the
potential of these predictions for acoustic inversion and tomography efforts.

Keywords: Ocean-acoustic predictions, multi-model super-ensemble, sound speed,
Kalman filter, data assimilation, tomography

1. Introduction

An increasing number of models are routinely providing operational (atmospheric)
weather forecasts and climate predictions (Palmer, 2004) but prediction skill is inherently
limited for a number of reasons, including simplifications in physical proeesses, errors in
initial conditions and boundary conditions, numerical schemes, efc. The use of data
assimilation techniques (e.g. Bennett, 1992; Wunseh, 1996; Robinson et al, 2004;
Bennett, 2002; Evensen, 2006) to regularly correet for model drifts may compensate to
some extent for loss of predictability with time (Lorenz, 1963). Model ensembles have
become an important means of investigating dispersion problems (Galmarini et al 2001,
2004), tracking individual model errors, inereasing forecast skill, and redueing
uncertaintics (Lermusiaux ct al, 2006) in highly dynamie and complex environments
where predictability is limited. The multi-model Super-Ensemble (SE) technique
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(Krishnamurti et al 1999, 2000a, 2000b), which uses an optimized combination of an
ensemble of models has previously been demonstrated to improve weather, seasonal and
interannual forcecast skill in atmospheric (Kumar et al 2003; Shin and Krishnamurti
2003a; Yun et al 2005; Mutemi ct al 2007) and ocean (Logutov and Robinson 200S5;
Rixen and Ferreira-Coelho 2005, 2007; Rixen et al, 2007, 2008) models over simple-
ensemble and bias-removed ensemble means. SE methods (Williford ct al 2003) have
been further improved by the use of dynamic (Shin and Krishnamurti 2003b, Rixen et al
2008), regularization (Yun ct al 2003), non-lincar (Rixen and Ferrcira-Coelho 2007) and
probabilistic (Rajagopalan et al 2002) techniques. These methods all aim at finding a
combination of models that optimally agrees with reference data over a training period
(the hindcast, regression or fit); this combination is subsequently used to produce a SE
forceast obtained by weighting individual model forecasts. A eritieal aspect for all super-
ensemble methods is therefore whether the regression solution is eapable of extrapolation
in time and is applieable to future events. In other words, is the learning adequate to
provide generalization skills?

Operational implementation of SE methods in Numerical Weather Prediction (NWP)
centers is quite straightforward due to the reliability of observational data streams and the
robustness of the models. On the other hand, in the ocean, the lack of long real-time data
time serics — espeeially in shallow waters — and a limited suite of operational models
have so far limited the application of such promising techniques in an operational
framework. The limitations for in-situ observations in the coastal and shallow water
environment are mostly due to heavy maritime traffie, intense fishing aetivity and
mechanieal and biological stress on sensors and platforms.

A pioncering study was conducted during the MREA04 (Maritime Rapid Environmental
Assessment) field experiment along the Portuguese coasts to investigate the potential
benefit of SE techniques for acoustic purposes and coneluded that simple linear-
regression based multi-model predietion were able to improve significantly sound speed
predietion skills at 24hr lead time (Rixen and Ferreira-Coelho, 2004).

Real-time oeean-acoustie predictions and data assimilation can be very useful but require
a precise understanding of the full transfer of uneertainties from the oeean to the acoustie,
e.g. using ensemble schemes (Lermusiaux et al 2002; Lermusiaux and Chiu, 2002;
Robinson and Lermusiaux, 2004; Lermusiaux et al, 2006. Adaptive sampling sehemes
and their impaet on acoustic propagation may help redueing uncertaintics in spceific
regions of interest (e.g. Heaney et al, 2007; Wang et al, 2008 this issue; Yilmaz et al,
2008).

In the framework of the BP07 field experiment condueted South-East of Elba in Spring
2007 (Le Gac and Hermand, 2007), we investigated the use of dynamic SE techniques
based on the Kalman filter (Kalman, 1960) to allow for a temporal evolution of model
combinations, which form the basis of the present work, deseribed in seection 2. A
thorough acoustic propagation sensitivity study is earried out in seetion 3 to assess the
potential of SE predictions for acoustic inversion and tomography purposes. Specifically,
multi-frequeney correlations and uncertainties are investigated in detail. In a companion




paper (Carricre et al, 2007, this issue), full-ficld tomography and Kalman tracking of the
range-dependent sound speed is investigated for the same ficld experiment.

2. The BP07 experiment: ocean observations and predictions

An intense joint ocean-acoustic observational program and prediction effort took place
during the BP0O7 experiment and is described in details in the field trial report (LeGac and
Hermand, 2007) and in a number of companion publications (Carricre ct al, Meyer ct al,
Lam et al, Coclho ct al, this issuc).

The main focus of the experiment was on a small area Southeast of Elba Island, Italy and
in particular on a scction in the middle of area ‘REA I’ (AB transect in Fig. 1) for which a
dectailed gcoacoustic characterization of the seafloor and subseafloor is available
following the Yellow Shark 94 inversion results (Hermand and Gerstoft 1996, Hermand
1999). However the occan monitoring cffort was not entirely focused on the A-B transect
but also covered the wider BP3 arca in gencral.
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¢ Aretusa

% Leonardo
% Snellius

42°50
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Fig. 1. MREA/BPO07 test areas. The boxes for ocean monitoring and prediction
(BP3) and for acoustic characterization (REA1) are shown. Stars in yellow, green
and gray show CTD casts collected by R/V Aretusa (Italian Navy), R/V Leonardo




(NURC) and R/V Snellius (Royal Netherlands Navy), respectively, during the BP07
time frame, April 16 — May 4, 2007. Section AB has been one of the focuses of the
ocean-acoustic experiments.

Regular CTD were colleeted by three vessels and provided a reasonable spatio-temporal
coverage. In addition, two thermistor strings 15km apart and equipped with 11 sensors,
were deployed by NRV Leonardo at position A and B from 19 April to 1 May. They
eovered water depths respeetively from 13.3m to 63.5m and from 13.5m to 53.5m with
spaeing of Sm. Sampling rate was set to 2 minutes. Sensors 7 and 11 at mooring A failed
and were withdrawn. Note (Fig. 2) the high temporal variability (some patterns have
cyeles shorter than an hour) and the strong differenees between the two moorings.
Surfaee heating is obvious at station B, whilst station B shows the presence of a more
complex mixed layer on two occasions and a more cyclic pattern in temperature
evolution.

Fig. 2 Raw temperature thermistor string data time series over depth (m) collected
respectively at the A and B endpoints of the transect.




These measuremcnts were complcmented by selected MVP surveys (see Lam ef al, this
issue), oceanographic data from acoustic drifting buoys and profiles collected from R/V
Snellius launch or rubbcr boat (not shown here).

All data collccted in the vieinity of the AB transcct represent a pool of 18866 temperature
data and 6882 salinity data, which were objeetively analyzed and gridded using an
Optimal Interpolation (OI) technique (e.g. Bretherton ef al, 1976, Rixen et al, 2001) with
an horizontal grid resolution of 715m, a vertical resolution of lm and a temporal
resolution of 3hrs. The 3D box over section AB for period 16 April-3 May 2007 was
spanning 15km, 110m and 13 days. To compensate for sensor noise and sensor intcr-
calibration issues, the noise-to-signal ratio was set to 1 after cross-validation of this
parameter. Because of the amount of data, intractable for direct optimal interpolation
techniques, the domain of analysis was split into sub-domains larger than typical
correlation lengths to overcome the computational burden, a technique known as sub-
optimal interpolation. The spatial correlation lengths were set to 4m on the vertical and
2km on the horizontal. Thc temporal correlation length was set to 1 day. Lower values
were crcating unphysical results because of the non-uniform distribution of observations
in space and time. A background field was obtained by spatio-tcmporal lincar rcgression
over the whole cxperimental period (also known as First Guess At Appropriate Time -
FGAT) and the OI analysis was computed on resulting anomalies. Multivariate analysis
techniques were not explored here. Sound spced fields werc dcrived from the T/S
analyscs (Fofonoff and Millard, 1983).

The sound-speed field over section AB cxhibits both spatial and temporal variability as
illustrated in Fig 3 and 4. Strong hcating can be observed on the upper 10m at the surface
over the period resulted in a strong pycnocline and high sound-spccd vertical gradicnts at
around 15m dcpth.. The area was subject to strong mesoscale activity as well (sce also
Carriére et al, this issue), as illustrated in the two high sound speed surface cells (Fig. 4).
The diurnal cycle has been smoothcd out by the analysis which was not able to preserve
all the spectral information because of the limited amount of data.
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Fig 4. Sound speed (m/s) temporal evolution over depth at different latitudes from
location A (top left) to B (bottom right).

2.2 Models and adaptive sampling

A specific prediction system was set up at NRLSSC for the MREA/BP07 sca trial. As
described in details in Coelho et al (this issue), it was built around the NCOM model.
Starting from the global NCOM model at 4-km resolution, two nested models wcre set up
in order to cover the full MREAOQO7 area respectively with a 2-km coarse resolution
(NCOM_COARSE) and a 0.6 km finc resolution (NCOM_FINE). SST data and MODAS
syntheties were indirectly assimilated in the models through the Global-NCOM models,
whilc the nested ones directly assimilatcd COAMPS-Europe 2 wind foreing and
NOGAPS heat fluxes. 48-h forecasts were made available on a daily basis.

NCOM cnsemblc runs were used to minimize forecast crror covariance by exploring
various obscrvational patterns (sece Coelho et al, this issue). Error covariance analyses
were transmittcd by NRLSSC to NURC and two CTD surveys were specifically designed
for this purpose and used in a parallel for the MSEAS-HOPS ocean modeling effort with
a sensitivity study of acoustic propagation and probability of detection at low frequencies
(scc Lam et al for details, this issuc). Thc proposed CTD sampling strategy was then
adapted according to rcal-time on-site constraints (ship time available in between
acoustic and geoacoustie runs, weather and sca-state, etc).



2.3 Super-ensemble predictions

The analysis field and NCOM model outputs were used to explore various ensemble
prediction techniques.

The simple ensemble mean (hereafter ENSMEAN) does not use observations over the
training period and thus, eannot really be eonsidered as a SE teehnique. However it is
also a used method, sinee it is usually expeeted to provide better foreeasts than individual
models (Kalnay and Ham, 1989).

The unbiased ensemble mean (hereafter UNBIASED ENSMEAN) eorreets for biases on
each individual model, based on observations during a training period. These unbiased
models arc then averaged.

The linear regression SE technique (LINREG) eonsists in finding a linear combination of
the models, minimizing (in the least mean squares sense) its departure from observations
during a training period. The resulting weights are then used to eombine numerical
foreeasts. This method ean be improved by normalizing models and adding a eonstant
model (i.e. bias or independent term), hereafter appended with suffix NORM).
Collinearities between the models can also be removed by retaining only a eertain
percentage of variability of the models by applying an Empirical Orthogonal Funetion
(EOF) (also known as Prineipal Component Analysis - PCA) on the models - in the
present study 95% of the varianee, with suffix EOF - whieh results in fewer models and

improves the generalization eapabilities of the SE. This method is hereafter referred to as
LINREG_NORMEOF.

These techniques are well known and have been tested in various oeeanographie eontexts
(Rixen and Ferreira-Coelho 2005, 2007, Rixen et al 2007, 2008; Lenartz et al, this issue;
Vandenbuleke et al, submitted). Training period is chosen a priori and all observations
are equally important. Naturally however, more reeent data should be more relevant and
weights should be adapted aecording to reeent model skills.

Sequential data assimilation techniques ean continuously adapt the weights during a
training period when observations are available up to the present time when weights are
frozen and used to eombine available foreeasts for the future. The reeursive Kalman filter
(Kalman, 1960) solution is well suited for this purpose and is briefly described in the
context of SE. It consists of two eonseeutive steps.

1) prediction step:

xf(ti) = Mt,xa(ti—l) (1)
P/ (t)=M, P(t_ )M +Q )

2) eorreetion step:




K=P'(¢)H"[R+HP/(¢)H"]" (3)
x“(t,) = x" () + K(y° - Hx' (1,)] “4)
P*(t,) = P/ (1;)~ KHP’(1,) (5)

The state vector x with eovarianee P, contains the weights on the modecls in the SE
combination. Superscript f denotes forccast state after prediction steps; and superseript a
stands for analyzed state after the eorreetion steps using observations. The state vector x
is initialized with a best guess obtained from the LINREG solution. The P is set to 0.5
initially as we expect P to be far off the optimal value at the beginning of the training.

In the eontext of SE, the model matrix M, with error eovarianee (, is the identity matrix.
Standard deviations of the model error for individual weights are set to the variability of
weights for LINREG solutions of various short sub-training periods, providing the
diagonal terms for the error covariance Q.

Observations arc represented in the veetor y, with crror covariance R. In the present
study, y is the analyzed sound speed, obtained by optimal intcrpolation of temperature
and salinity data and R is the expeeted error from the OI.

The observation opecrator / links the state vector space with the observation space and
contains the individual sound speed forccasts of the NCOM models.

Similarly to the LINREG method, the SE Kalman filter bascd method (KALMAN) ean
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